4537: n阶行列式
Time Limit(Common/Java):1000MS/3000MS Memory Limit:65536KByteTotal Submit: 28 Accepted:3
Description
设有n²个数,排列成n行n列的表
其中p1,p2,p3,...,pn是1到n的一个全排列。标准次序是从小到大。注意在这n个元素的任一排列中,当两个元素的先后次序与标准次序不同时,就说有一个逆序,一个排列中所有逆序的总和叫做这个排列的逆序数。逆序数为奇数的排列叫做奇排列,反之为偶排列。τ为当前排列的逆序数。
Input
每组数据一个n,接下来有n*n个数据。0<n<10。输入直到n为0结束。
Output
对于每组数据,输出n阶行列式D的值,每组数据后一换行。
Sample Input
2
3 -22 10Sample Output
case1: D=7.
Source
我提供了两种写法,一种是其可以暴力算,但是复杂度还是挺高的
#includeusing namespace std;__int64 det(__int64 *a, int n){ int i,j,m,c; --n; __int64 s=0,b[n*n]; if(n==0)return a[0]; for(m=1; m<=n+1; m++) { c=0; for(i=0; i<=n; i++) for(j=0; j<=n; j++) if(!(i==0||(j+1)==m)) b[c++]=a[i*n+j+i]; if((m+1)%2) s+=-1*a[m-1]*det(b,n); else s+=a[m-1]*det(b,n); } return s;}int main(){ __int64 a[105]; int ca=1,n,i,j; while(cin>>n,n) { for(i=0; i >a[i*n+j]; cout<<"case"< <<": D="< <<".\n\n"; } return 0;}
化简成上三角行列式的
#includeusing namespace std;typedef long long ll;ll a[20][20];ll det(int n){ ll ans=1; int sign=0; for(int i=0; i >n,n) { for(i=0; i >a[i][j]; cout<<"case"< <<": D="< <<".\n\n"; } return 0;}